OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5513
Stochastic Systems
Fall 2007
Midterm Exam \#2

PLEASE DO ALL FIVE PROBLEMS

Name : \qquad

E-Mail Address: \qquad

Problem 1:

A random variable Θ is uniformly distributed on the interval $\left(\theta_{1}, \theta_{2}\right)$ where θ_{1} and θ_{2} are real and satisfy $0 \leq \theta_{1}<\theta_{2}<\pi$. Find and sketch the probability density function of the transformed random variable $Y=\cos (\Theta)$.

Problem 2:

In a computer simulation, it is desired to transform numbers that are values of a random variable uniformly distributed on $(0,1)$ to numbers that are values of a Cauchy random variable with distribution function

$$
F_{X}(x)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}\left(\frac{x}{b}\right)
$$

Find the required transformation.

Problem 3:

The non-negative random variables X and Y are statistically independent with exponential densities

$$
\begin{aligned}
& f_{X}(x)=\alpha e^{-\alpha x} u(x), \text { and } \\
& f_{Y}(y)=\beta e^{-\beta y} u(y) .
\end{aligned}
$$

Find the probability density function of the random variable $W=X / Y$.

Problem 4:

Prove the Schwarz's inequality for random variables X ad Y : $[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$.
Hint: Homework 7, Problem 6.

Problem 5:

Random variables X_{1} and X_{2} having the joint density

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{3}{8} u\left(x_{1}-2\right) u\left(x_{2}-1\right) x_{1} x_{2}^{2} \exp \left(4-2 x_{1} x_{2}\right)
$$

undergo a transformation

$$
[T]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

to generate new random variables Y_{1} and Y_{2}. Find the joint density of Y_{1} and $Y_{2}, f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$.

